О проекте
Контакты


Поиск по сайту

Навигация:


Молекулярные основы действия фитогормонов

Достижения молекулярной биологии и генетики позволили по новому подойти к исследованию механизма действия гормонов. Широко использовались моди­фицированные растения, как мутанты, так и трансгенные. Особенно большие успехи были достигнуты в изучении рецепции и трансдукции гормонов, а также их взаимодействия на транскрипционном уровне. Большинство ученых счита­ют, что подобно гормонам животных первичной реакцией фитогормонов явля­ется взаимодействие с рецептором.

Рецепторы — это молекулы белковой природы, которые распознают гормон, специфически связываются с ним, меняя свою конфигурацию с образованием гормон-рецепторного комплекса. Гормон-рецепторный комплекс передает гор­мональный сигнал, необходимый для «запуска» ответной физиологической ре­акции клетки. Рецепторы располагаются как на мембранах, так и в цитозоле. Один и тот же гормон может связываться с разными рецепторами, тем самым вызывая различные ответные физиологические реакции. Именно это является одной из причин многофункциональности в действии фитогормонов. Необхо­димо учитывать, что фитогормоны оказывают влияние только на восприимчивые к ним (компетентные) клетки. Одним из важнейших условий компетентности как раз и является наличие специфических рецепторов. Для идентификации белков-рецепторов с успехом используется генетический подход. Объектом наибольшего количества исследований служит крошечное рас­тение сем. Крестоцветные Arabidopsis thaliana — арабидопсис (резушка Таля). Это связано с быстрым размножением этого растения, коротким жизненным цик­лом (около 6 недель) и изученностью его генома. Однако используются мутанты и трансгенные особи таких растений как кукуруза, табак, соя, томаты. Трудность этих исследований заключается в том, что, как правило, фитогормоны связыва­ются со многими белками, но не все из них обладают рецепторными функциями, т. е. участвуют в дальнейшей передаче гормонального сигнала. Первый белок, обладающий рецепторной функцией, был обнаружен для ауксинов — AБП1 — ауксинсвязывающий протеин.

Предполагается, что этот протеин связан с гормоном при помощи иона ме­талла. AБП1 локализован на эндоплазматическом ретикулуме и частично на плаз-малемме. Именно та часть белка, которая расположена на плазмалемме, служит для восприятия ауксинового сигнала. Белок, находящийся на ЭПР является за­пасным. После связывания ауксина с рецептором следует активирование группы фак­торов транскрипции, входящих в сигнальную цепь. Это вызывает транскрипцию ранних генов (гены первичного ответа). Ингибиторы белкового синтеза, такие как циклогексимид, не тормозят экспрессию ранних генов. Время для экспрес­сии ранних генов ограничено и колеблется от нескольких минут до часа. Иссле­дования гормонов животных показали, что гены прямого ответа выполняют несколько задач, в том числе кодируют белки, регулирующие транскрипцию ге­нов вторичного ответа (поздних генов). В 1996 г. Абель с сотрудниками иден­тифицировали 5 групп ранних ауксин-зависимых генов. Гены первой группы кодируют образование маленьких полипептидных цепочек молекулярной массой 19—36 кДа. Эти цепочки являются короткоживущими факторами, регулирующи­ми транскрипцию, и служат репрессорами или активаторами для экспрессии поздних генов. Поздние гены кодируют белки, вызывающие физиологическую реакцию. Например, в случае ауксина фактор регуляции транскрипции вызы­вает экспрессию позднего гена, который кодирует протеазы и рибонуклеазы, участвующие в дифференциации клеток и образовании элементов ксилемы. Поиск рецепторов цитокининов в течение ряда лет осуществлялся в разных лабораториях. Мембранный рецептор цитокининов был выделен в 2001 г. Это­му предшествовало обнаружение мутантов арабидопсиса, нечувствительных к цитокинину. Был выделен соответствующий ген и кодируемый этим геном бе­лок-рецептор. Этот рецептор локализован в плазмалемме. Предполагается, что он принадлежит к классу бикомпонентных регуляторов. Один домен этого бел­ка-рецептора, расположенный на внешней стороне мембраны, узнает и свя­зывает цитокинин. Связывание приводит к фосфорилированию, и как следст­вие к изменению конфигурации и активации рецептора. Далее включается сигнальная цепь, представляющая каскад фосфорилирования, в конце которо­го фосфат переносится на факторы регуляции транскрипции генов. В настоя­щее время в арабидопсисе идентифицировано семь генов первичного ответа на цитокинины. Нельзя не отметить, что имеются данные о регуляции цитокининами синте­за белков не только на уровне транскрипции, но и независимым от транскрип­ции путем (О.Н. Кулаева, В.В. Кузнецов). Это может происходить за счет регу­ляции цитокининами фосфорилирования рибосомальных белков и белковых факторов трансляции.

Рецепторы этилена по своей структуре сходны с рецепторами цитокининов. Исследования проводились на мутантах арабидопсиса, нечувствительных к эти­лену. Был выделен соответствующий ген ETR1 (триплетный ответ на этилен). Этот ген кодирует сенсорную гистидинкиназу, сходную с рецептором цитокини­нов. Связывание этилена с рецептором происходит с участием меди. Дальнейшие исследования показали, что этилен может связываться с пятью аналогичными белками. Все они относятся к его рецепторам. Распределение различных рецеп­торов этилена тканеспецифично. Сигнал от всех рецепторов передается на про-теинкиназу и далее через МАР-киназный каскад. Это путем фосфорилирова­ния активирует фактор регуляции транскрипции и индукцию генов. Вместе с тем есть данные, что в передаче этиленового сигнала от рецептора на MAP — киназы участвуют G-белки. О рецепторе гиббереллинов известно мало, но предполагают, что, по-види­мому, он находится на поверхности клеток. Наиболее изучен механизм дейст­вия гиббереллинов на образование ос-амилазы и других гидролитических фер­ментов в алейроновом слое прорастающих семян. Показано, что гиббереллин влияет на синтез а-амилазы de novo на уровне транскрипции. Фактор транскрип­ции связывается с ДНК на особом гиббереллинчувствительном участке — про­моторе. Мутация в этом участке приводит к потере способности экзогенного гиббереллина индуцировать экспрессию а-амилазы. Установлена зависимость секреции уже образовавшегося фермента от содержания кальция и кальцийсвя-зывающего белка — кальмодулина. Рецептор АБК не идентифицирован. Но опыты с инъекцией АБК в плазма-лемму показали, что рецептор находится на поверхности мембраны. Не исклю­чено наличие второго рецептора, расположенного внутри мембраны. Имеются данные, что АБК оказывает влияние на фактор регуляции транскрипции. Таким образом, взаимодействие с гормоном меняет конформацию рецепто­ра, переводя его в активированное состояние. Активированные мембранные рецепторы передают сигнал внутрь клетки с помощью тех или иных каскадных механизмов с участием вторичных посредников. Передаваемый сигнал непо­средственно взаимодействует с промоторной областью ДНК и при участии фак­тора регуляции транскрипции вызывает экспрессию генов.

Влияние фитогормонов на новообразование белков-ферментов может осуще­ствляться и на постгранскрипционном уровне. В частности, показано значение в этом процессе гиббереллина. Фитогормоны могут регулировать время жизни мРНК, а также процесс ее поступления в цитоплазму. Ряд исследований показывает, что под влиянием цитокинина повышается функциональная активность рибосом, а также их число, что и приводит к возрастанию синтеза белков-ферментов. Имеются прямые экспериментальные доказательства взаимосвязи фитогор­монов с синтезом белков-ферментов. Действие фитогормонов не проявляется при введении ингибиторов синтеза мРНК и белка. В тоже время показано влия­ние гормонов на увеличение новообразования мРНК и белка. При неблагопри­ятных условиях гормоны участвуют в индукции генов, кодирующих образование стрессовых белков. Так, ауксины стимулируют биосинтез таких ферментов, как целлюлаза, цел-люлозосинтетаза, пектинметилэстераза, АТФаза и др. Гиббереллины активируют образование ряда гидролаз и ферментов, катализирующих синтез липидов, вхо­дящих в состав мембран. Четкие данные по индуцированию синтеза фермен­тов, таких, как нитратредуктаза, РБФ-карбоксилаза/оксигеназа и др., получены для цитокининов. Фитогормоны, ингибирующие рост (АБК), тормозят синтез ряда белков. В то же время АБК, накапливаясь в семенах в период их естествен­ного обезвоживания, индуцирует синтез белков в позднем эмбриогенезе. Этилен активирует образование белков-ферментов, участвующих в процессах, стиму­лирующих созревание плодов. Однако наряду с действием на дифференциальную активность генома боль­шое значение имеет влияние фитогормонов на мембраны. Действие на уровне мембран, по-видимому, характерно для всех фитогормонов. Так, существуют дан­ные, что под влиянием ауксина изменяется толщина мембран. Гормоны регули­руют проницаемость мембран. Ауксины и цитокинины усиливают поступление ионов через мембраны. АБК и этилен индуцируют выход ионов из клетки. Под влиянием гиббереллинов возрастает проницаемость мембран для Сахаров. По­казано также, что гиббереллин вызывает новообразование мембран эндоплаз-матического ретикулума, способствуя синтезу их липидных компонентов.

Показано, что под влиянием ауксина происходит выход протонов на наруж­ную сторону плазмалеммы, развивается гиперполяризация мембран, возрастает ΔμН+ (В.В. Полевой). Как известно, ΔμН+ возникает либо благодаря работе редокс-цепи, либо за счет распада АТФ в результате действия АТФ-фазы: ΔμН+ -> АТФ -> ΔμН+. Имеются данные, что ИУК активизирует АТФазу, лока­лизованную в плазмалемме. Это и может быть причиной активации выхода про­тонов (Н+-помпа). Вместе с тем ауксины повышают интенсивность дыхания, ускоряя работу дыхательной цепи (редокс-цепь), следствием чего также может быть усиление выброса протонов через мембрану митохондрий. Этот механизм является одной из основ действия ИУК на рост растяжением. В настоящее время признано, что способность к росту определяется энерге­тическим потенциалом клетки (отношение АТФ/АДФ). При взаимодействии с мембранами фитогормоны влияют именно на поток энергии. Усиливаются процессы окислительного фосфорилирования (ауксины), фотосинтетического фосфорилирования (гиббереллины, цитокинины). Образовавшаяся после взаи­модействия фитогормонов с мембранами АТФ, наряду с использованием на раз­личные синтезы, может служить источником образования циклической АМФ (цАМФ). Последняя образуется из АТФ при участии связанного с мембранами фермента аденилатциклазы. Под влиянием цАМФ активируются ферменты протеинкиназы, катализирующие фосфорилирование белков, участвующих в сиг­нальных цепях и транскрипции. Изложенный материал показывает, что под влиянием условий среды, а также в зависимости от свойств данной клетки (ее местоположения) в ней создается определенное соотношение гормонов. Это, в свою очередь, определяет развер­тывание генетической программы, темпы роста, дифференциацию и развитие. Надо только учитывать, что клетка должна быть восприимчива, или компетентна, к действию фитогормонов, в частности, должна обладать соответствующими рецепторами.

 

 
 

Copyright © 2010-2013 "Физиология растений" Онлайн-энциклопедия fizrast.ru