О проекте
Контакты


Поиск по сайту


Физиологическая природа ростовых движений растений

Все движения растений приводят к определенной ориентировке органов в про­странстве. Они выработались в процессе эволюции как приспособление к лучше­му использованию света, питательных веществ и других условий среды. Так, отрицательный геотропизм и положительный фототропизм стебля позволяют растению выносить листья к свету. Рост корня вниз и уклонение от света спо­собствуют углублению его в почву и лучшему использованию питательных веществ. Изменение направления роста стебля при пониженной температуре приводит к образованию более устойчивых стелющихся форм. Открывание и закрывание цветков в определенные периоды суток является приспособлени­ем к лучшему опылению. В основе всех ростовых движений лежит неравномерный рост разных сторон органа. При геотропических изгибах у стебля быстрее растет нижняя, а у корня верхняя сторона. При положительном фототропическом изгибе стебля быстрее растет затененная сторона и т. д. Эпинастические движения связаны с разраста­нием морфологически верхней стороны органа листа или лепестка цветка, а гипонастические — с разрастанием морфологически нижней стороны. Все ука­занные движения характерны лишь для молодых органов, не потерявших еще способности к росту, и в таких условиях, в которых ростовые процессы осущест­вимы. В 1928 г. Н.Г. Холодный и Ф. Вент выдвинули гормональную теорию тропизмов, которая в дальнейшем была подтверждена многочисленными эксперимен­тами. Согласно этой теории, при нормальном освещении и вертикальном поло­жении проростка ток гормона (ауксина), вырабатываемого в верхушке органа, распределяется равномерно. Следствием этого является равномерный рост. При одностороннем освещении либо при горизонтальном положении ауксин рас­пределяется неравномерно, результатом чего является неравномерный рост и изгиб органа. Так, в случае одностороннего освещения стебля ауксин кон­центрируется на затененной стороне, благодаря чему она растет быстрее, и сте­бель изгибается в сторону света. Результаты экспериментов показывают роль в фототропизме точки роста — место, где происходит восприятие света и синтез ауксина. Показано, что декапитированные колеоптили только через 3 ч возоб­новляют способность реагировать на одностороннее освещение. Для проявления реакции на неравномерное освещение (фототропизм) должен существовать какой-то фоторецептор. Природа такого фоторецептора (пигмен­та) окончательно не установлена. Однако изучение спектра действия показало, что наиболее эффективным для проявления фототропизма является синий свет. Полагают, что фоторецептором в этом случае является флавопротеин.

Флавопротеин — это фосфорилированная протеинкиназа, которая стимулируется синим светом. Спектр действия активирования синим светом этой киназы совпадает со спектром действия активации фототропизма. Одностороннее восприятие све­та фоторецептором вызывает электрическую поляризацию тканей, градиент фос­форилирования и, как следствие, отклонение тока ауксинов и повышение их концентрации на затененной стороне. Под влиянием силы земного притяжения при горизонтальном положении проростка ауксин концентрируется на нижней стороне органа. Это приводит к быстрому росту нижней стороны стебля, и он изгибается вверх. Ауксин кон­центрируется также и на нижней стороне корня. Однако оптимальная концент­рация ауксина для корня примерно в 1000 раз ниже, чем для стебля. Из-за этого увеличение концентрации ауксина на нижней стороне корня приводит к тормо­жению ее роста, и корень изгибается вниз. Необходимо указать, что тормозящее влияние высоких концентраций ауксина, возможно, является результатом на­копления под его влиянием этилена. Важным объектом исследования геотропизма являются мутанты, которые не реагируют на земное притяжение — агравитропы. Исследования мутантов под­тверждают гипотезу Холодного — Вента о том, что ауксин является необходимым условием гравитропизма. В отличие от фототропизма при геотропизме все части растения одинаково воспринимают силу тяжести. Вместе с тем появляются данные, что в осуществлении геотропических дви­жений большую роль играют ингибиторы роста, прежде всего абсцизовая кис­лота. В экспериментах с корнями кукурузы было показано, что источником ингибиторов роста является корневой чехлик. Под влиянием гравитации инги­биторы роста, образовавшиеся в корневом чехлике, накапливаются на нижней стороне горизонтально расположенного корня, и, как следствие, рост нижней стороны тормозится, корень изгибается вниз. Таким образом, корневой чехлик не только воспринимает раздражение, но и отвечает за образование и распреде­ление гормональных веществ. Существуют различные гипотезы, объясняющие первичный механизм вос­приятия геотропического раздражения. Согласно одной из них, под влиянием одностороннего действия силы тяжести в клетках апикальной зоны (для корней в корневом чехлике) происходит перемещение более тяжелых частиц — статолитов (главным образом крахмальные зерна или, точнее, амилопласты). Под влиянием одностороннего воздействия земного притяжения статолиты скапли­ваются на одной стороне органа. Крахмальные зерна присутствуют почти во всех геотропически чувствительных тканях.

Интересно, что в результате голодания крахмальные зерна исчезают, и геотропическая чувствительность не проявляет­ся. Мутанты кукурузы, характеризующиеся меньшим содержанием амилопластов, обладают меньшей геотропической чувствительностью. Имеются данные, что перемещающиеся статолиты оказывают давление на мембраны клеток ниж­ней стороны органа. Под электронным микроскопом можно наблюдать сжатие цистерн эндоплазматического ретикулума. Можно предполагать, что именно скопление статолитов на нижней стороне органа, в свою очередь, вызывает пе­редвижение веществ, регулирующих рост, что и приводит к неравномерному рос­ту и изгибу. Однако в некоторых случаях геотропическая чувствительность сохраняется и при отсутствии амилопластов. Это показано на лишенных крахмала мутантах, а также на организмах, не имеющих статолитов, например, зеленой водоросли хара. Предполагают, что у этой водоросли вместо статолитов реагируют микрофиламенты и сила тяжести воспринимается всей цитоплазмой. Возможно, что в этих случаях роль статолитов выполняют другие частицы (митохондрии, диктиосомы). Выдвинута также гипотеза, согласно которой геотропическую реак­цию контролирует плазматическая мембрана, которая связывает кальциевыми каналами цитоскелет и клеточную стенку. Эти каналы реагируют на силу тяже­сти, в результате изменяется и возникает новый порядок взаимосвязи между цитоскелетом и клеточной стенкой. Эта модель объясняет, почему хара и лишен­ные крахмала мутанты арабидопсиса реагируют на силу тяжести.

 

 
 

Copyright © 2010-2013 "Физиология растений" Онлайн-энциклопедия fizrast.ru